A Reinforcement Learning Variant for Control Scheduling
نویسنده
چکیده
We present an algorithm based on reinforcement and state recurrence learning techniques to solve control scheduling problems. In particular, we have devised a simple learning scheme called "handicapped learning", in which the weights of the associative search element are reinforced, either positively or negatively, such that the system is forced to move towards the desired setpoint in the shortest possible trajectory. To improve the learning rate, a variable reinforcement scheme is employed: negative reinforcement values are varied depending on whether the failure occurs in handicapped or normal mode of operation. Furthermore, to realize a simulated annealing scheme for accelerated learning, if the system visits the same failed state successively, the negative reinforcement value is increased. In examples studied, these learning schemes have demonstrated high learning rates, and therefore may prove useful for in-situ learning.
منابع مشابه
Operation Scheduling of MGs Based on Deep Reinforcement Learning Algorithm
: In this paper, the operation scheduling of Microgrids (MGs), including Distributed Energy Resources (DERs) and Energy Storage Systems (ESSs), is proposed using a Deep Reinforcement Learning (DRL) based approach. Due to the dynamic characteristic of the problem, it firstly is formulated as a Markov Decision Process (MDP). Next, Deep Deterministic Policy Gradient (DDPG) algorithm is presented t...
متن کاملiCORE Research Grant Renewal Proposal Reinforcement Learning and Artificial Intelligence
The RLAI research program pursues an approach to artificial intelligence and engineering problems in which they are formulated as large optimal control problems and approximately solved using reinforcement learning methods. Reinforcement learning is a new body of theory and techniques for optimal control that has been developed in the last twenty years primarily within the machine learning and ...
متن کاملManufacturing Scheduling Using Colored Petri Nets and Reinforcement Learning
Agent-based intelligent manufacturing control systems are capable to efficiently respond and adapt to environmental changes. Manufacturing system adaptation and evolution can be addressed with learning mechanisms that increase the intelligence of agents. In this paper a manufacturing scheduling method is presented based on Timed Colored Petri Nets (CTPNs) and reinforcement learning (RL). CTPNs ...
متن کاملMulticast Routing in Wireless Sensor Networks: A Distributed Reinforcement Learning Approach
Wireless Sensor Networks (WSNs) are consist of independent distributed sensors with storing, processing, sensing and communication capabilities to monitor physical or environmental conditions. There are number of challenges in WSNs because of limitation of battery power, communications, computation and storage space. In the recent years, computational intelligence approaches such as evolutionar...
متن کاملOptimal Scheduling for Reference Tracking or State Regulation using Reinforcement Learning
The problem of optimal control of autonomous nonlinear switching systems with infinite-horizon cost functions, for the purpose of tracking a family of reference signals or regulation of the states, is investigated. A reinforcement learning scheme is presented which learns the solution and provides scheduling between the modes in a feedback form without enforcing a mode sequence or a number of s...
متن کامل